Instead of keeping bytecode as a set of disjoint basic blocks on the
malloc heap, bytecode is now a contiguous sequence of bytes(!)
The transformation happens at the end of Bytecode::Generator::generate()
and the only really hairy part is rerouting jump labels.
This required solving a few problems:
- The interpreter execution loop had to change quite a bit, since we
were storing BasicBlock pointers all over the place, and control
transfer was done by redirecting the interpreter's current block.
- Exception handlers & finalizers are now stored per-bytecode-range
in a side table in Executable.
- The interpreter now has a plain program counter instead of a stream
iterator. This actually makes error stack generation a bit nicer
since we just have to deal with a number instead of reaching into
the iterator.
This yields a 25% performance improvement on this microbenchmark:
for (let i = 0; i < 1_000_000; ++i) { }
But basically everything gets faster. :^)
If all lexical declaration use local variables then there is no need
to allocate declarative environment.
With this change we skip ~3x more environment allocations on Github.
We already had fast access to own properties via shape-based IC.
This patch extends the mechanism to properties on the prototype chain,
using the "validity cell" technique from V8.
- Prototype objects now have unique shape
- Each prototype has an associated PrototypeChainValidity
- When a prototype shape is mutated, every prototype shape "below" it
in any prototype chain is invalidated.
- Invalidation happens by marking the validity object as invalid,
and then replacing it with a new validity object.
- Property caches keep a pointer to the last seen valid validity.
If there is no validity, or the validity is invalid, the cache
misses and gets repopulated.
This is very helpful when using JavaScript to access DOM objects,
as we frequently have to traverse 4+ prototype objects before finding
the property we're interested in on e.g EventTarget or Node.
We can now tell the difference between an own property access and a
subsequent (automatic) prototype chain access.
This will be used to implement caching of prototype chain accesses.
If a function has the following properties:
- uses only local variables and registers
- does not use `this`
- does not use `new.target`
- does not use `super`
- does not use direct eval() calls
then it is possible to entirely skip function environment allocation
because it will never be used
This change adds gathering of information whether a function needs to
access `this` from environment and updates `prepare_for_ordinary_call()`
to skip allocation when possible.
For now, this optimisation is too aggressively blocked; e.g. if `this`
is used in a function scope, then all functions in outer scopes have to
allocate an environment. It could be improved in the future, although
this implementation already allows skipping >80% of environment
allocations on Discord, GitHub and Twitter.
Before this change both ExecutionContext and CallFrame were created
before executing function/module/script with a couple exceptions:
- executable created for default function argument evaluation has to
run in function's execution context.
- `execute_ast_node()` where executable compiled for ASTNode has to be
executed in running execution context.
This change moves all members previously owned by CallFrame into
ExecutionContext, and makes two exceptions where an executable that does
not have a corresponding execution context saves and restores registers
before running.
Now, all execution state lives in a single entity, which makes it a bit
easier to reason about and opens opportunities for optimizations, such
as moving registers and local variables into a single array.
The following command was used to clang-format these files:
clang-format-18 -i $(find . \
-not \( -path "./\.*" -prune \) \
-not \( -path "./Base/*" -prune \) \
-not \( -path "./Build/*" -prune \) \
-not \( -path "./Toolchain/*" -prune \) \
-not \( -path "./Ports/*" -prune \) \
-type f -name "*.cpp" -o -name "*.mm" -o -name "*.h")
There are a couple of weird cases where clang-format now thinks that a
pointer access in an initializer list, e.g. `m_member(ptr->foo)`, is a
lambda return statement, and it puts spaces around the `->`.
There's no need to capture things as Handle when using HeapFunction.
In this case, it was even creating a strong reference cycle, which ended
up leaking.
currently crashes with an assertion failure in `String::repeated` if
malloc can't serve a `count * input_size` sized request, so add
`String::repeated_with_error` to propagate the error.
These changes are compatible with clang-format 16 and will be mandatory
when we eventually bump clang-format version. So, since there are no
real downsides, let's commit them now.
When running with --log-all-js-exceptions, we will print the message
and backtrace for every single JS exception that is thrown, not just
the ones nobody caught.
This can sometimes be very helpful in debugging sites that swallow
important exceptions.
This fixes the relevant warnings when running LibJSGCVerifier. Note that
the analysis is only performed over LibJS-adjacent code, but could be
performed over the entire codebase. That will have to wait for a future
commit.
This lets us avoid false positives when a GCPtr-wrapped member is only
a weak reference which is automatically updated by the GC when the
member's gc state is updated.
When a GetById / GetByValue bytecode operation results in accessing a
nullish object, we now include the name of the property and the object
being accessed in the exception message (if available). This should make
it easier to debug live websites.
For example, the following errors would all previously produce a generic
error message of "ToObject on null or undefined":
> foo = null
> foo.bar
Uncaught exception:
[TypeError] Cannot access property "bar" on null object "foo"
at <unknown>
> foo = { bar: undefined }
> foo.bar.baz
Uncaught exception:
[TypeError] Cannot access property "baz" on undefined object "foo.bar"
at <unknown>
Note we certainly don't capture all possible nullish property read
accesses here. This just covers cases I've seen most on live websites;
we can cover more cases as they arise.
ObservableArray inherits from JS::Array and overrides `internal_set`
and `internal_delete` to run an interceptor callback when an indexed
item is added or deleted.
As long as the inputs are Int32, we can convert them to UInt32 in a
spec-compliant way with a simple static_cast<u32>.
This allows calculations like `-3 >>> 2` to take the fast path as well,
which is extremely valuable for stuff like crypto code.
While we're doing this, also remove the fast paths from the generic
shift functions in Value.cpp, since we only end up there if we *didn't*
take the same fast path in the interpreter.
Update to the latest version of the spec which was refactored to use
time zone methods record. This requires updating a whole bunch of
callers to pass through a record too.
This also ends up improving exceptions on a missing
getOffsetNanosecondsFor method.
Comparing two Values has to call the generic same_value() helper,
and we can avoid this by simply using a stronger type for built-in
native function handlers.
This reverts commit 9c943f36ed.
This optimization is superseded by optimizing IsValidIntegerIndex for
TypedArrays with non-resizable ArrayBuffers. Reverting this commit has
no impact on test-js, test262, or live website performance.
This reverts commit 5fd53652b7.
This optimization is superseded by optimizing IsValidIntegerIndex for
TypedArrays with non-resizable ArrayBuffers. Reverting this commit has
no impact on test-js, test262, or live website performance.
This reverts commit 72cee4c88b.
This optimization is superseded by optimizing IsValidIntegerIndex for
TypedArrays with non-resizable ArrayBuffers. Reverting this commit has
no impact on test-js, test262, or live website performance.
If we know the TA does not have a resizable ArrayBuffer, we can avoid
most of the heavy lifting that IsValidIntegerIndex performs.
On https://cyxx.github.io/another_js, this reduces the runtime of
IsValidIntegerIndex from 7.1% to 3.7%.