Files
ladybird/Kernel/Heap/SlabAllocator.cpp
Tom bc5d6992a4 Kernel: Memory purging improvements
This adds the ability for a Region to define volatile/nonvolatile
areas within mapped memory using madvise(). This also means that
memory purging takes into account all views of the PurgeableVMObject
and only purges memory that is not needed by all of them. When calling
madvise() to change an area to nonvolatile memory, return whether
memory from that area was purged. At that time also try to remap
all memory that is requested to be nonvolatile, and if insufficient
pages are available notify the caller of that fact.
2021-01-01 23:43:44 +01:00

188 lines
6.3 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Assertions.h>
#include <AK/Memory.h>
#include <Kernel/Heap/SlabAllocator.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/SpinLock.h>
#include <Kernel/VM/Region.h>
#define SANITIZE_SLABS
namespace Kernel {
template<size_t templated_slab_size>
class SlabAllocator {
public:
SlabAllocator() { }
void init(size_t size)
{
m_base = kmalloc_eternal(size);
m_end = (u8*)m_base + size;
FreeSlab* slabs = (FreeSlab*)m_base;
m_slab_count = size / templated_slab_size;
for (size_t i = 1; i < m_slab_count; ++i) {
slabs[i].next = &slabs[i - 1];
}
slabs[0].next = nullptr;
m_freelist = &slabs[m_slab_count - 1];
m_num_allocated.store(0, AK::MemoryOrder::memory_order_release);
}
constexpr size_t slab_size() const { return templated_slab_size; }
size_t slab_count() const { return m_slab_count; }
void* alloc()
{
FreeSlab* free_slab;
{
// We want to avoid being swapped out in the middle of this
ScopedCritical critical;
FreeSlab* next_free;
free_slab = m_freelist.load(AK::memory_order_consume);
do {
if (!free_slab)
return kmalloc(slab_size());
// It's possible another processor is doing the same thing at
// the same time, so next_free *can* be a bogus pointer. However,
// in that case compare_exchange_strong would fail and we would
// try again.
next_free = free_slab->next;
} while (!m_freelist.compare_exchange_strong(free_slab, next_free, AK::memory_order_acq_rel));
m_num_allocated.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
}
#ifdef SANITIZE_SLABS
memset(free_slab, SLAB_ALLOC_SCRUB_BYTE, slab_size());
#endif
return free_slab;
}
void dealloc(void* ptr)
{
ASSERT(ptr);
if (ptr < m_base || ptr >= m_end) {
kfree(ptr);
return;
}
FreeSlab* free_slab = (FreeSlab*)ptr;
#ifdef SANITIZE_SLABS
if (slab_size() > sizeof(FreeSlab*))
memset(free_slab->padding, SLAB_DEALLOC_SCRUB_BYTE, sizeof(FreeSlab::padding));
#endif
// We want to avoid being swapped out in the middle of this
ScopedCritical critical;
FreeSlab* next_free = m_freelist.load(AK::memory_order_consume);
do {
free_slab->next = next_free;
} while (!m_freelist.compare_exchange_strong(next_free, free_slab, AK::memory_order_acq_rel));
m_num_allocated.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel);
}
size_t num_allocated() const { return m_num_allocated.load(AK::MemoryOrder::memory_order_consume); }
size_t num_free() const { return m_slab_count - m_num_allocated.load(AK::MemoryOrder::memory_order_consume); }
private:
struct FreeSlab {
FreeSlab* next;
char padding[templated_slab_size - sizeof(FreeSlab*)];
};
Atomic<FreeSlab*> m_freelist { nullptr };
Atomic<ssize_t> m_num_allocated;
size_t m_slab_count;
void* m_base { nullptr };
void* m_end { nullptr };
static_assert(sizeof(FreeSlab) == templated_slab_size);
};
static SlabAllocator<16> s_slab_allocator_16;
static SlabAllocator<32> s_slab_allocator_32;
static SlabAllocator<64> s_slab_allocator_64;
static SlabAllocator<128> s_slab_allocator_128;
static_assert(sizeof(Region) <= s_slab_allocator_128.slab_size());
template<typename Callback>
void for_each_allocator(Callback callback)
{
callback(s_slab_allocator_16);
callback(s_slab_allocator_32);
callback(s_slab_allocator_64);
callback(s_slab_allocator_128);
}
void slab_alloc_init()
{
s_slab_allocator_16.init(128 * KiB);
s_slab_allocator_32.init(128 * KiB);
s_slab_allocator_64.init(512 * KiB);
s_slab_allocator_128.init(512 * KiB);
}
void* slab_alloc(size_t slab_size)
{
if (slab_size <= 16)
return s_slab_allocator_16.alloc();
if (slab_size <= 32)
return s_slab_allocator_32.alloc();
if (slab_size <= 64)
return s_slab_allocator_64.alloc();
if (slab_size <= 128)
return s_slab_allocator_128.alloc();
ASSERT_NOT_REACHED();
}
void slab_dealloc(void* ptr, size_t slab_size)
{
if (slab_size <= 16)
return s_slab_allocator_16.dealloc(ptr);
if (slab_size <= 32)
return s_slab_allocator_32.dealloc(ptr);
if (slab_size <= 64)
return s_slab_allocator_64.dealloc(ptr);
if (slab_size <= 128)
return s_slab_allocator_128.dealloc(ptr);
ASSERT_NOT_REACHED();
}
void slab_alloc_stats(Function<void(size_t slab_size, size_t allocated, size_t free)> callback)
{
for_each_allocator([&](auto& allocator) {
auto num_allocated = allocator.num_allocated();
auto num_free = allocator.slab_count() - num_allocated;
callback(allocator.slab_size(), num_allocated, num_free);
});
}
}