mirror of
https://github.com/fergalmoran/ladybird.git
synced 2025-12-22 17:28:30 +00:00
When converting a `Gfx::Bitmap` to a Skia bitmap, we cannot assume the color data is unpremultiplied. For example, everything canvas-related uses premultiplied color data: https://html.spec.whatwg.org/multipage/canvas.html#premultiplied-alpha-and-the-2d-rendering-context We were probably assuming unpremultiplied since that is what the PNG decoder gives us. Since we now make `Gfx::Bitmap` identify what alpha type is being used, we can instruct Skia a bit better :^) Update our `EdgeFlagPathRasterizer` to use premultiplied alpha instead of unpremultiplied so we can apply alpha correctly for path masks. This fixes the dark borders sometimes visible when SVGs are blended with a colored background. This also exposed an issue with our `CanvasRenderingContext2D`, which is supposed to hold a bitmap with premultiplied alpha internally but expose a bitmap with unpremultiplied alpha in `CanvasImageData`. Expand our C2D test to include the alpha channel as well. Finally, this also exposed an off-by-one issue in `EdgeFlagPathRasterizer` which caused the last scanlines for edges to render incorrectly. We had some reference images which included these corruptions (they were almost unnoticeable), so update them as well.
471 lines
18 KiB
C++
471 lines
18 KiB
C++
/*
|
|
* Copyright (c) 2023-2024, MacDue <macdue@dueutil.tech>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/Array.h>
|
|
#include <AK/Debug.h>
|
|
#include <AK/IntegralMath.h>
|
|
#include <AK/Types.h>
|
|
#include <LibGfx/AntiAliasingPainter.h>
|
|
#include <LibGfx/EdgeFlagPathRasterizer.h>
|
|
#include <LibGfx/Painter.h>
|
|
|
|
#if defined(AK_COMPILER_GCC)
|
|
# pragma GCC optimize("O3")
|
|
#endif
|
|
|
|
// This an implementation of edge-flag scanline AA, as described in:
|
|
// https://mlab.taik.fi/~kkallio/antialiasing/EdgeFlagAA.pdf
|
|
|
|
namespace Gfx {
|
|
|
|
static Vector<Detail::Edge> prepare_edges(ReadonlySpan<FloatLine> lines, unsigned samples_per_pixel, FloatPoint origin,
|
|
int top_clip_scanline, int bottom_clip_scanline, int& min_edge_y, int& max_edge_y)
|
|
{
|
|
Vector<Detail::Edge> edges;
|
|
edges.ensure_capacity(lines.size());
|
|
// The first visible y value.
|
|
auto top_clip = top_clip_scanline * int(samples_per_pixel);
|
|
// The last visible y value.
|
|
auto bottom_clip = (bottom_clip_scanline + 1) * int(samples_per_pixel);
|
|
min_edge_y = bottom_clip;
|
|
max_edge_y = top_clip;
|
|
|
|
for (auto& line : lines) {
|
|
auto p0 = line.a() - origin;
|
|
auto p1 = line.b() - origin;
|
|
|
|
p0.scale_by(1, samples_per_pixel);
|
|
p1.scale_by(1, samples_per_pixel);
|
|
|
|
i8 winding = -1;
|
|
if (p0.y() > p1.y()) {
|
|
swap(p0, p1);
|
|
} else {
|
|
winding = 1;
|
|
}
|
|
|
|
if (p0.y() == p1.y())
|
|
continue;
|
|
|
|
auto min_y = static_cast<int>(p0.y());
|
|
auto max_y = static_cast<int>(p1.y());
|
|
|
|
// Clip edges that start below the bottom clip...
|
|
if (min_y > bottom_clip)
|
|
continue;
|
|
// ...and edges that end before the top clip.
|
|
if (max_y < top_clip)
|
|
continue;
|
|
|
|
auto start_x = p0.x();
|
|
auto end_x = p1.x();
|
|
auto dx = end_x - start_x;
|
|
auto dy = max_y - min_y;
|
|
|
|
if (dy == 0)
|
|
continue;
|
|
|
|
auto dxdy = dx / dy;
|
|
|
|
// Trim off the non-visible portions of the edge.
|
|
if (min_y < top_clip) {
|
|
start_x += dxdy * (top_clip - min_y);
|
|
min_y = top_clip;
|
|
}
|
|
if (max_y > bottom_clip)
|
|
max_y = bottom_clip;
|
|
|
|
min_edge_y = min(min_y, min_edge_y);
|
|
max_edge_y = max(max_y, max_edge_y);
|
|
|
|
edges.unchecked_append(Detail::Edge {
|
|
start_x,
|
|
min_y,
|
|
max_y,
|
|
dxdy,
|
|
winding,
|
|
nullptr });
|
|
}
|
|
return edges;
|
|
}
|
|
|
|
template<unsigned SamplesPerPixel>
|
|
EdgeFlagPathRasterizer<SamplesPerPixel>::EdgeFlagPathRasterizer(IntSize size)
|
|
: m_size(size.width() + 1, size.height() + 1)
|
|
{
|
|
}
|
|
|
|
template<unsigned SamplesPerPixel>
|
|
void EdgeFlagPathRasterizer<SamplesPerPixel>::fill(Painter& painter, Path const& path, Color color, WindingRule winding_rule, FloatPoint offset)
|
|
{
|
|
fill_internal(painter, path, color, winding_rule, offset);
|
|
}
|
|
|
|
template<unsigned SamplesPerPixel>
|
|
void EdgeFlagPathRasterizer<SamplesPerPixel>::fill(Painter& painter, Path const& path, PaintStyle const& style, float opacity, WindingRule winding_rule, FloatPoint offset)
|
|
{
|
|
style.paint(enclosing_int_rect(path.bounding_box()), [&](PaintStyle::SamplerFunction sampler) {
|
|
if (opacity == 0.0f)
|
|
return;
|
|
if (opacity != 1.0f) {
|
|
return fill_internal(
|
|
painter, path, [=, sampler = move(sampler)](IntPoint point) {
|
|
return sampler(point).with_opacity(opacity);
|
|
},
|
|
winding_rule, offset);
|
|
}
|
|
return fill_internal(painter, path, move(sampler), winding_rule, offset);
|
|
});
|
|
}
|
|
|
|
template<unsigned SamplesPerPixel>
|
|
void EdgeFlagPathRasterizer<SamplesPerPixel>::fill_internal(Painter& painter, Path const& path, auto color_or_function, WindingRule winding_rule, FloatPoint offset)
|
|
{
|
|
auto bounding_box = enclosing_int_rect(path.bounding_box().translated(offset));
|
|
auto dest_rect = bounding_box.translated(painter.translation());
|
|
auto origin = bounding_box.top_left().to_type<float>() - offset;
|
|
m_blit_origin = dest_rect.top_left();
|
|
m_clip = dest_rect.intersected(painter.clip_rect());
|
|
|
|
// Only allocate enough to plot the parts of the scanline that could be visible.
|
|
// Note: This can't clip the LHS.
|
|
auto scanline_length = min(m_size.width(), m_clip.right() - m_blit_origin.x());
|
|
if (scanline_length <= 0)
|
|
return;
|
|
|
|
m_scanline.resize(scanline_length);
|
|
|
|
if (m_clip.is_empty())
|
|
return;
|
|
|
|
auto lines = path.split_lines();
|
|
if (lines.is_empty())
|
|
return;
|
|
|
|
int min_edge_y = 0;
|
|
int max_edge_y = 0;
|
|
auto top_clip_scanline = m_clip.top() - m_blit_origin.y();
|
|
auto bottom_clip_scanline = m_clip.bottom() - m_blit_origin.y() - 1;
|
|
auto edges = prepare_edges(lines, SamplesPerPixel, origin, top_clip_scanline, bottom_clip_scanline, min_edge_y, max_edge_y);
|
|
if (edges.is_empty())
|
|
return;
|
|
|
|
int min_scanline = min_edge_y / SamplesPerPixel;
|
|
int max_scanline = max_edge_y / SamplesPerPixel;
|
|
m_edge_table.set_scanline_range(min_scanline, max_scanline);
|
|
for (auto& edge : edges) {
|
|
// Create a linked-list of edges starting on this scanline:
|
|
int start_scanline = edge.min_y / SamplesPerPixel;
|
|
edge.next_edge = m_edge_table[start_scanline];
|
|
m_edge_table[start_scanline] = &edge;
|
|
}
|
|
|
|
auto empty_edge_extent = [&] {
|
|
return EdgeExtent { m_size.width() - 1, 0 };
|
|
};
|
|
|
|
auto for_each_sample = [&](Detail::Edge& edge, int start_subpixel_y, int end_subpixel_y, EdgeExtent& edge_extent, auto callback) {
|
|
for (int y = start_subpixel_y; y < end_subpixel_y; y++) {
|
|
auto xi = static_cast<int>(edge.x + SubpixelSample::nrooks_subpixel_offsets[y]);
|
|
if (xi >= 0 && size_t(xi) < m_scanline.size()) [[likely]] {
|
|
SampleType sample = 1 << y;
|
|
callback(xi, y, sample);
|
|
} else if (xi < 0) {
|
|
if (edge.dxdy <= 0)
|
|
return;
|
|
} else {
|
|
xi = m_scanline.size() - 1;
|
|
}
|
|
edge.x += edge.dxdy;
|
|
edge_extent.min_x = min(edge_extent.min_x, xi);
|
|
edge_extent.max_x = max(edge_extent.max_x, xi);
|
|
}
|
|
};
|
|
|
|
Detail::Edge* active_edges = nullptr;
|
|
|
|
if (winding_rule == WindingRule::EvenOdd) {
|
|
auto plot_edge = [&](Detail::Edge& edge, int start_subpixel_y, int end_subpixel_y, EdgeExtent& edge_extent) {
|
|
for_each_sample(edge, start_subpixel_y, end_subpixel_y, edge_extent, [&](int xi, int, SampleType sample) {
|
|
m_scanline[xi] ^= sample;
|
|
});
|
|
};
|
|
for (int scanline = min_scanline; scanline <= max_scanline; scanline++) {
|
|
auto edge_extent = empty_edge_extent();
|
|
active_edges = plot_edges_for_scanline(scanline, plot_edge, edge_extent, active_edges);
|
|
write_scanline<WindingRule::EvenOdd>(painter, scanline, edge_extent, color_or_function);
|
|
}
|
|
} else {
|
|
VERIFY(winding_rule == WindingRule::Nonzero);
|
|
// Only allocate the winding buffer if needed.
|
|
// NOTE: non-zero fills are a fair bit less efficient. So if you can do an even-odd fill do that :^)
|
|
if (m_windings.is_empty())
|
|
m_windings.resize(m_scanline.size());
|
|
|
|
auto plot_edge = [&](Detail::Edge& edge, int start_subpixel_y, int end_subpixel_y, EdgeExtent& edge_extent) {
|
|
for_each_sample(edge, start_subpixel_y, end_subpixel_y, edge_extent, [&](int xi, int y, SampleType sample) {
|
|
m_scanline[xi] |= sample;
|
|
m_windings[xi].counts[y] += edge.winding;
|
|
});
|
|
};
|
|
for (int scanline = min_scanline; scanline <= max_scanline; scanline++) {
|
|
auto edge_extent = empty_edge_extent();
|
|
active_edges = plot_edges_for_scanline(scanline, plot_edge, edge_extent, active_edges);
|
|
write_scanline<WindingRule::Nonzero>(painter, scanline, edge_extent, color_or_function);
|
|
}
|
|
}
|
|
}
|
|
|
|
ALWAYS_INLINE static auto switch_on_color_or_function(auto& color_or_function, auto color_case, auto function_case)
|
|
{
|
|
using ColorOrFunction = decltype(color_or_function);
|
|
constexpr bool has_constant_color = IsSame<RemoveCVReference<ColorOrFunction>, Color>;
|
|
if constexpr (has_constant_color) {
|
|
return color_case(color_or_function);
|
|
} else {
|
|
return function_case(color_or_function);
|
|
}
|
|
}
|
|
|
|
template<unsigned SamplesPerPixel>
|
|
Color EdgeFlagPathRasterizer<SamplesPerPixel>::scanline_color(int scanline, int offset, u8 alpha, auto& color_or_function)
|
|
{
|
|
auto color = switch_on_color_or_function(
|
|
color_or_function, [](Color color) { return color; },
|
|
[&](auto& function) {
|
|
return function({ offset, scanline });
|
|
});
|
|
if (color.alpha() == 255)
|
|
return color.with_alpha(alpha, AlphaType::Premultiplied);
|
|
return color.with_alpha(color.alpha() * alpha / 255, AlphaType::Premultiplied);
|
|
}
|
|
|
|
template<unsigned SamplesPerPixel>
|
|
__attribute__((hot)) Detail::Edge* EdgeFlagPathRasterizer<SamplesPerPixel>::plot_edges_for_scanline(int scanline, auto plot_edge, EdgeExtent& edge_extent, Detail::Edge* active_edges)
|
|
{
|
|
auto y_subpixel = [](int y) {
|
|
return y & (SamplesPerPixel - 1);
|
|
};
|
|
|
|
auto* current_edge = active_edges;
|
|
Detail::Edge* prev_edge = nullptr;
|
|
|
|
// First iterate over the edge in the active edge table, these are edges added on earlier scanlines,
|
|
// that have not yet reached their end scanline.
|
|
while (current_edge) {
|
|
int end_scanline = current_edge->max_y / SamplesPerPixel;
|
|
if (scanline == end_scanline) {
|
|
// This edge ends this scanline.
|
|
plot_edge(*current_edge, 0, y_subpixel(current_edge->max_y), edge_extent);
|
|
// Remove this edge from the AET
|
|
current_edge = current_edge->next_edge;
|
|
if (prev_edge)
|
|
prev_edge->next_edge = current_edge;
|
|
else
|
|
active_edges = current_edge;
|
|
} else {
|
|
// This edge sticks around for a few more scanlines.
|
|
plot_edge(*current_edge, 0, SamplesPerPixel, edge_extent);
|
|
prev_edge = current_edge;
|
|
current_edge = current_edge->next_edge;
|
|
}
|
|
}
|
|
|
|
// Next, iterate over new edges for this line. If active_edges was null this also becomes the new
|
|
// AET. Edges new will be appended here.
|
|
current_edge = m_edge_table[scanline];
|
|
while (current_edge) {
|
|
int end_scanline = current_edge->max_y / SamplesPerPixel;
|
|
if (scanline == end_scanline) {
|
|
// This edge will end this scanlines (no need to add to AET).
|
|
plot_edge(*current_edge, y_subpixel(current_edge->min_y), y_subpixel(current_edge->max_y), edge_extent);
|
|
} else {
|
|
// This edge will live on for a few more scanlines.
|
|
plot_edge(*current_edge, y_subpixel(current_edge->min_y), SamplesPerPixel, edge_extent);
|
|
// Add this edge to the AET
|
|
if (prev_edge)
|
|
prev_edge->next_edge = current_edge;
|
|
else
|
|
active_edges = current_edge;
|
|
prev_edge = current_edge;
|
|
}
|
|
current_edge = current_edge->next_edge;
|
|
}
|
|
|
|
if (prev_edge)
|
|
prev_edge->next_edge = nullptr;
|
|
|
|
m_edge_table[scanline] = nullptr;
|
|
return active_edges;
|
|
}
|
|
|
|
template<unsigned SamplesPerPixel>
|
|
auto EdgeFlagPathRasterizer<SamplesPerPixel>::accumulate_even_odd_scanline(EdgeExtent edge_extent, auto init, auto sample_callback)
|
|
{
|
|
SampleType sample = init;
|
|
VERIFY(edge_extent.min_x >= 0);
|
|
VERIFY(edge_extent.max_x < static_cast<int>(m_scanline.size()));
|
|
for (int x = edge_extent.min_x; x <= edge_extent.max_x; x++) {
|
|
sample ^= m_scanline.data()[x];
|
|
sample_callback(x, sample);
|
|
m_scanline.data()[x] = 0;
|
|
}
|
|
return sample;
|
|
}
|
|
|
|
template<unsigned SamplesPerPixel>
|
|
auto EdgeFlagPathRasterizer<SamplesPerPixel>::accumulate_non_zero_scanline(EdgeExtent edge_extent, auto init, auto sample_callback)
|
|
{
|
|
NonZeroAcc acc = init;
|
|
VERIFY(edge_extent.min_x >= 0);
|
|
VERIFY(edge_extent.max_x < static_cast<int>(m_scanline.size()));
|
|
for (int x = edge_extent.min_x; x <= edge_extent.max_x; x++) {
|
|
if (auto edges = m_scanline.data()[x]) {
|
|
// We only need to process the windings when we hit some edges.
|
|
for (auto y_sub = 0u; y_sub < SamplesPerPixel; y_sub++) {
|
|
auto subpixel_bit = 1 << y_sub;
|
|
if (edges & subpixel_bit) {
|
|
auto winding = m_windings.data()[x].counts[y_sub];
|
|
auto previous_winding_count = acc.winding.counts[y_sub];
|
|
acc.winding.counts[y_sub] += winding;
|
|
// Toggle fill on change to/from zero.
|
|
if (bool(previous_winding_count) ^ bool(acc.winding.counts[y_sub]))
|
|
acc.sample ^= subpixel_bit;
|
|
}
|
|
}
|
|
}
|
|
sample_callback(x, acc.sample);
|
|
m_scanline.data()[x] = 0;
|
|
m_windings.data()[x] = {};
|
|
}
|
|
return acc;
|
|
}
|
|
|
|
template<unsigned SamplesPerPixel>
|
|
template<WindingRule WindingRule, typename Callback>
|
|
auto EdgeFlagPathRasterizer<SamplesPerPixel>::accumulate_scanline(EdgeExtent edge_extent, auto init, Callback callback)
|
|
{
|
|
if constexpr (WindingRule == WindingRule::EvenOdd)
|
|
return accumulate_even_odd_scanline(edge_extent, init, callback);
|
|
else
|
|
return accumulate_non_zero_scanline(edge_extent, init, callback);
|
|
}
|
|
|
|
template<unsigned SamplesPerPixel>
|
|
void EdgeFlagPathRasterizer<SamplesPerPixel>::write_pixel(BitmapFormat format, ARGB32* scanline_ptr, int scanline, int offset, SampleType sample, auto& color_or_function)
|
|
{
|
|
if (!sample)
|
|
return;
|
|
auto dest_x = offset + m_blit_origin.x();
|
|
auto coverage = SubpixelSample::compute_coverage(sample);
|
|
auto paint_color = scanline_color(scanline, offset, coverage_to_alpha(coverage), color_or_function);
|
|
scanline_ptr[dest_x] = color_for_format(format, scanline_ptr[dest_x]).blend(paint_color).value();
|
|
}
|
|
|
|
template<unsigned SamplesPerPixel>
|
|
void EdgeFlagPathRasterizer<SamplesPerPixel>::fast_fill_solid_color_span(ARGB32* scanline_ptr, int start, int end, Color color)
|
|
{
|
|
auto start_x = start + m_blit_origin.x();
|
|
auto end_x = end + m_blit_origin.x();
|
|
fast_u32_fill(scanline_ptr + start_x, color.value(), end_x - start_x + 1);
|
|
}
|
|
|
|
template<unsigned SamplesPerPixel>
|
|
template<WindingRule WindingRule>
|
|
FLATTEN __attribute__((hot)) void EdgeFlagPathRasterizer<SamplesPerPixel>::write_scanline(Painter& painter, int scanline, EdgeExtent edge_extent, auto& color_or_function)
|
|
{
|
|
// Handle scanline clipping.
|
|
auto left_clip = m_clip.left() - m_blit_origin.x();
|
|
EdgeExtent clipped_extent { max(left_clip, edge_extent.min_x), edge_extent.max_x };
|
|
if (clipped_extent.min_x > clipped_extent.max_x) {
|
|
// Fully clipped. Unfortunately we still need to zero the scanline data.
|
|
edge_extent.memset_extent(m_scanline.data(), 0);
|
|
if constexpr (WindingRule == WindingRule::Nonzero)
|
|
edge_extent.memset_extent(m_windings.data(), 0);
|
|
return;
|
|
}
|
|
|
|
// Accumulate non-visible section (without plotting pixels).
|
|
auto acc = accumulate_scanline<WindingRule>(EdgeExtent { edge_extent.min_x, left_clip - 1 }, initial_acc<WindingRule>(), [](int, SampleType) {
|
|
// Do nothing!
|
|
});
|
|
|
|
// Get pointer to current scanline pixels.
|
|
auto dest_format = painter.target().format();
|
|
auto dest_ptr = painter.target().scanline(scanline + m_blit_origin.y());
|
|
|
|
// Simple case: Handle each pixel individually.
|
|
// Used for PaintStyle fills and semi-transparent colors.
|
|
auto write_scanline_pixelwise = [&](auto& color_or_function) {
|
|
accumulate_scanline<WindingRule>(clipped_extent, acc, [&](int x, SampleType sample) {
|
|
write_pixel(dest_format, dest_ptr, scanline, x, sample, color_or_function);
|
|
});
|
|
};
|
|
// Fast fill case: Track spans of solid color and set the entire span via a fast_u32_fill().
|
|
// Used for opaque colors (i.e. alpha == 255).
|
|
auto write_scanline_with_fast_fills = [&](Color color) {
|
|
if (color.alpha() != 255)
|
|
return write_scanline_pixelwise(color);
|
|
constexpr SampleType full_coverage = NumericLimits<SampleType>::max();
|
|
int full_coverage_count = 0;
|
|
accumulate_scanline<WindingRule>(clipped_extent, acc, [&](int x, SampleType sample) {
|
|
if (sample == full_coverage) {
|
|
full_coverage_count++;
|
|
return;
|
|
} else {
|
|
write_pixel(dest_format, dest_ptr, scanline, x, sample, color);
|
|
}
|
|
if (full_coverage_count > 0) {
|
|
fast_fill_solid_color_span(dest_ptr, x - full_coverage_count, x - 1, color);
|
|
full_coverage_count = 0;
|
|
}
|
|
});
|
|
if (full_coverage_count > 0)
|
|
fast_fill_solid_color_span(dest_ptr, clipped_extent.max_x - full_coverage_count + 1, clipped_extent.max_x, color);
|
|
};
|
|
switch_on_color_or_function(
|
|
color_or_function, write_scanline_with_fast_fills, write_scanline_pixelwise);
|
|
}
|
|
|
|
static IntSize path_bounds(Gfx::Path const& path)
|
|
{
|
|
return enclosing_int_rect(path.bounding_box()).size();
|
|
}
|
|
|
|
// Note: The AntiAliasingPainter and Painter now perform the same antialiasing,
|
|
// since it would be harder to turn it off for the standard painter.
|
|
// The samples are reduced to 8 for Gfx::Painter though as a "speedy" option.
|
|
|
|
void Painter::fill_path(Path const& path, Color color, WindingRule winding_rule)
|
|
{
|
|
EdgeFlagPathRasterizer<8> rasterizer(path_bounds(path));
|
|
rasterizer.fill(*this, path, color, winding_rule);
|
|
}
|
|
|
|
void Painter::fill_path(Path const& path, PaintStyle const& paint_style, float opacity, WindingRule winding_rule)
|
|
{
|
|
EdgeFlagPathRasterizer<8> rasterizer(path_bounds(path));
|
|
rasterizer.fill(*this, path, paint_style, opacity, winding_rule);
|
|
}
|
|
|
|
void AntiAliasingPainter::fill_path(Path const& path, Color color, WindingRule winding_rule)
|
|
{
|
|
EdgeFlagPathRasterizer<32> rasterizer(path_bounds(path));
|
|
rasterizer.fill(m_underlying_painter, path, color, winding_rule, m_transform.translation());
|
|
}
|
|
|
|
void AntiAliasingPainter::fill_path(Path const& path, PaintStyle const& paint_style, float opacity, WindingRule winding_rule)
|
|
{
|
|
EdgeFlagPathRasterizer<32> rasterizer(path_bounds(path));
|
|
rasterizer.fill(m_underlying_painter, path, paint_style, opacity, winding_rule, m_transform.translation());
|
|
}
|
|
|
|
template class EdgeFlagPathRasterizer<8>;
|
|
template class EdgeFlagPathRasterizer<16>;
|
|
template class EdgeFlagPathRasterizer<32>;
|
|
|
|
}
|