Files
ladybird/Userland/Libraries/LibVideo/VP9/Decoder.h
Zaggy1024 befcd479ae LibVideo/VP9: Add Frame, Tile and Block context structs
These are used to pass context needed for decoding, with mutability
scoped only to the sections that the function receiving the contexts
needs to modify. This allows lifetimes of data to be more explicit
rather than being stored in fields, as well as preventing tile threads
from modifying outside their allowed bounds.
2022-11-30 08:28:30 +01:00

155 lines
7.4 KiB
C++

/*
* Copyright (c) 2021, Hunter Salyer <thefalsehonesty@gmail.com>
* Copyright (c) 2022, Gregory Bertilson <zaggy1024@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/ByteBuffer.h>
#include <AK/Error.h>
#include <AK/NonnullOwnPtr.h>
#include <AK/Queue.h>
#include <AK/Span.h>
#include <LibVideo/Color/CodingIndependentCodePoints.h>
#include <LibVideo/DecoderError.h>
#include <LibVideo/VideoDecoder.h>
#include <LibVideo/VideoFrame.h>
#include "Parser.h"
namespace Video::VP9 {
class Decoder : public VideoDecoder {
friend class Parser;
public:
Decoder();
~Decoder() override { }
/* (8.1) General */
DecoderErrorOr<void> receive_sample(ReadonlyBytes) override;
DecoderErrorOr<NonnullOwnPtr<VideoFrame>> get_decoded_frame() override;
private:
typedef i32 Intermediate;
// Based on the maximum size resulting from num_4x4_blocks_wide_lookup.
static constexpr size_t maximum_block_dimensions = 64ULL;
static constexpr size_t maximum_block_size = maximum_block_dimensions * maximum_block_dimensions;
// Based on the maximum for TXSize.
static constexpr size_t maximum_transform_size = 32ULL * 32ULL;
DecoderErrorOr<void> decode_frame(ReadonlyBytes);
DecoderErrorOr<void> create_video_frame(FrameContext const&);
DecoderErrorOr<void> allocate_buffers(FrameContext const&);
Vector<Intermediate>& get_temp_buffer(u8 plane);
Vector<u16>& get_output_buffer(u8 plane);
/* (8.4) Probability Adaptation Process */
u8 merge_prob(u8 pre_prob, u8 count_0, u8 count_1, u8 count_sat, u8 max_update_factor);
u8 merge_probs(int const* tree, int index, u8* probs, u8* counts, u8 count_sat, u8 max_update_factor);
DecoderErrorOr<void> adapt_coef_probs();
DecoderErrorOr<void> adapt_non_coef_probs();
void adapt_probs(int const* tree, u8* probs, u8* counts);
u8 adapt_prob(u8 prob, u8 counts[2]);
/* (8.5) Prediction Processes */
// (8.5.1) Intra prediction process
DecoderErrorOr<void> predict_intra(u8 plane, BlockContext const& block_context, u32 x, u32 y, bool have_left, bool have_above, bool not_on_right, TXSize tx_size, u32 block_index);
// (8.5.1) Inter prediction process
DecoderErrorOr<void> predict_inter(u8 plane, BlockContext const& block_context, u32 x, u32 y, u32 width, u32 height, u32 block_index);
// (8.5.2.1) Motion vector selection process
MotionVector select_motion_vector(u8 plane, BlockContext const&, u8 ref_list, u32 block_index);
// (8.5.2.2) Motion vector clamping process
MotionVector clamp_motion_vector(u8 plane, BlockContext const&, u32 block_row, u32 block_column, MotionVector vector);
// (8.5.2.3) Motion vector scaling process
DecoderErrorOr<MotionVector> scale_motion_vector(u8 plane, u8 ref_list, u32 x, u32 y, MotionVector vector);
// From (8.5.1) Inter prediction process, steps 2-5
DecoderErrorOr<void> predict_inter_block(u8 plane, BlockContext const&, u8 ref_list, u32 block_row, u32 block_column, u32 x, u32 y, u32 width, u32 height, u32 block_index, Span<u16> block_buffer);
/* (8.6) Reconstruction and Dequantization */
// FIXME: These should be inline or constexpr
u16 dc_q(u8 b);
u16 ac_q(u8 b);
// Returns the quantizer index for the current block
u8 get_qindex();
// Returns the quantizer value for the dc coefficient for a particular plane
u16 get_dc_quant(u8 plane);
// Returns the quantizer value for the ac coefficient for a particular plane
u16 get_ac_quant(u8 plane);
// (8.6.2) Reconstruct process
DecoderErrorOr<void> reconstruct(u8 plane, BlockContext const&, u32 transform_block_x, u32 transform_block_y, TXSize transform_block_size);
// (8.7) Inverse transform process
DecoderErrorOr<void> inverse_transform_2d(Span<Intermediate> dequantized, u8 log2_of_block_size);
// (8.7.1) 1D Transforms
// (8.7.1.1) Butterfly functions
inline i32 cos64(u8 angle);
inline i32 sin64(u8 angle);
// The function B( a, b, angle, 0 ) performs a butterfly rotation.
inline void butterfly_rotation_in_place(Span<Intermediate> data, size_t index_a, size_t index_b, u8 angle, bool flip);
// The function H( a, b, 0 ) performs a Hadamard rotation.
inline void hadamard_rotation_in_place(Span<Intermediate> data, size_t index_a, size_t index_b, bool flip);
// The function SB( a, b, angle, 0 ) performs a butterfly rotation.
// Spec defines the source as array T, and the destination array as S.
template<typename S, typename D>
inline void butterfly_rotation(Span<S> source, Span<D> destination, size_t index_a, size_t index_b, u8 angle, bool flip);
// The function SH( a, b ) performs a Hadamard rotation and rounding.
// Spec defines the source array as S, and the destination array as T.
template<typename S, typename D>
inline void hadamard_rotation(Span<S> source, Span<D> destination, size_t index_a, size_t index_b);
template<typename T>
inline i32 round_2(T value, u8 bits);
// Checks whether the value is representable by a signed integer with (8 + bit_depth) bits.
inline bool check_intermediate_bounds(Intermediate value);
// (8.7.1.10) This process does an in-place Walsh-Hadamard transform of the array T (of length 4).
inline DecoderErrorOr<void> inverse_walsh_hadamard_transform(Span<Intermediate> data, u8 log2_of_block_size, u8 shift);
// (8.7.1.2) Inverse DCT array permutation process
inline DecoderErrorOr<void> inverse_discrete_cosine_transform_array_permutation(Span<Intermediate> data, u8 log2_of_block_size);
// (8.7.1.3) Inverse DCT process
inline DecoderErrorOr<void> inverse_discrete_cosine_transform(Span<Intermediate> data, u8 log2_of_block_size);
// (8.7.1.4) This process performs the in-place permutation of the array T of length 2 n which is required as the first step of
// the inverse ADST.
inline void inverse_asymmetric_discrete_sine_transform_input_array_permutation(Span<Intermediate> data, u8 log2_of_block_size);
// (8.7.1.5) This process performs the in-place permutation of the array T of length 2 n which is required before the final
// step of the inverse ADST.
inline void inverse_asymmetric_discrete_sine_transform_output_array_permutation(Span<Intermediate> data, u8 log2_of_block_size);
// (8.7.1.6) This process does an in-place transform of the array T to perform an inverse ADST.
inline void inverse_asymmetric_discrete_sine_transform_4(Span<Intermediate> data);
// (8.7.1.7) This process does an in-place transform of the array T using a higher precision array S for intermediate
// results.
inline DecoderErrorOr<void> inverse_asymmetric_discrete_sine_transform_8(Span<Intermediate> data);
// (8.7.1.8) This process does an in-place transform of the array T using a higher precision array S for intermediate
// results.
inline DecoderErrorOr<void> inverse_asymmetric_discrete_sine_transform_16(Span<Intermediate> data);
// (8.7.1.9) This process performs an in-place inverse ADST process on the array T of size 2 n for 2 ≤ n ≤ 4.
inline DecoderErrorOr<void> inverse_asymmetric_discrete_sine_transform(Span<Intermediate> data, u8 log2_of_block_size);
/* (8.10) Reference Frame Update Process */
DecoderErrorOr<void> update_reference_frames(FrameContext const&);
inline CodingIndependentCodePoints get_cicp_color_space();
NonnullOwnPtr<Parser> m_parser;
Vector<u16> m_output_buffers[3];
Queue<NonnullOwnPtr<VideoFrame>, 1> m_video_frame_queue;
};
}