Laurent Monin b33e59428f Clean up various matching iterations, unify a bit
- use generators for candidates
- introduce picard.util.find_best_match() and sort_by_similarity() with tests
- partially revert change that removed sorted(), it was actually faster and cleaner
- use namedtuples to get rid of numeric indexes
- when no match, output max similarity, threshold and number of candidates to debug log
- make code easier to understand, using long names and namedtuple attributes, and simpler workflow
- use repr(best_match) for debug, as it provides all the needed info
- set values explicitly using namedtuple kw parameters
- use same prefix for namedtuples names, it eases searching through code

Typical debug output looks like:
```
D: 13:16:41,806 cluster._lookup_finished:223: BestMatch(similarity=0.79, result=SimMatchRelease(similarity=0.79, release={'id': '36b8f767-c4c0-4ba1-becd-f40a452303d5', 'score': 79, 'count': 1, 'title': 'Purple', 'status': 'Official', 'packaging': 'Jewel Case', 'text-representation': {'language': 'eng', 'script': 'Latn'}, 'artist-credit': [{'artist': {'id': '8c32bb01-58a3-453b-8050-8c0620edb0e5', 'name': 'Stone Temple Pilots', 'sort-name': 'Stone Temple Pilots'}}], 'release-group': {'id': '01d45519-54a6-3427-b0dc-222203fa5d57', 'type-id': 'f529b476-6e62-324f-b0aa-1f3e33d313fc', 'title': 'Purple', 'primary-type': 'Album'}, 'date': '1995-08-25', 'country': 'US', 'release-events': [{'date': '1995-08-25', 'area': {'id': '489ce91b-6658-3307-9877-795b68554c98', 'name': 'United States', 'sort-name': 'United States', 'iso-3166-1-codes': ['US']}}], 'track-count': 11, 'media': [{'format': 'CD', 'disc-count': 10, 'track-count': 11}]}), num_results=25) < threshold=0.800000
```
2019-03-23 16:29:44 +01:00
2019-03-04 17:31:14 +01:00
2018-11-25 12:05:02 +01:00
2019-01-13 10:15:01 +01:00
2006-10-19 22:00:30 +02:00
2019-03-12 16:25:47 +01:00
2018-11-04 11:09:24 +01:00
2019-03-05 21:53:32 +01:00

MusicBrainz Picard

Travis Status Codacy Grade AppVeyor Status

MusicBrainz Picard is a cross-platform (Linux/Mac OS X/Windows) application written in Python and is the official MusicBrainz tagger.

Picard supports the majority of audio file formats, is capable of using audio fingerprints (AcoustIDs), performing CD lookups and disc ID submissions, and it has excellent Unicode support. Additionally, there are several plugins available that extend Picard's features.

When tagging files, Picard uses an album-oriented approach. This approach allows it to utilize the MusicBrainz data as effectively as possible and correctly tag your music. For more information, see the illustrated quick start guide to tagging.

Picard is named after Captain Jean-Luc Picard from the TV series Star Trek: The Next Generation.

Binary downloads are available here.

Support and issue reporting

Please report all bugs and feature requests in the MusicBrainz issue tracker. If you need support in using Picard please read the documentation first and have a look at the MusicBrainz community forums.

Installing

INSTALL.md has instructions on building this codebase.

Description
No description provided
Readme 82 MiB
Languages
Python 99.4%
Shell 0.3%
PowerShell 0.2%
C 0.1%